
Scaffolding Instructions to Learn Procedures from Users

Paul Groth and Yolanda Gil
Information Sciences Institute

University of Southern California
pgroth@isi.edu , gil@isi.edu

Abstract

Humans often teach procedures through tutorial instruc-
tion to other humans. For computers, learning from
natural human instruction remains a challenge as it is
plagued with incompleteness and ambiguity. Instruc-
tions are often given out of order and are not always
consistent. Moreover, humans assume that the learner
has a wealth of knowledge and skills, which computers
do not always have. Our goal is to develop an elec-
tronic student that can be made increasingly capable
through research to learn from human tutorial instruc-
tion. Initially, we will provide our student with human-
understandable instruction that is extended with many
scaffolding statements that supplement the limited ini-
tial capabilities of the student. Over time, improve-
ments to the system are driven and quantified by the
removal of scaffolding instructions that are not consid-
ered to be natural for users to provide humans. This
paper describes our initial design and implementation
of this system, how it learns from scaffolded instruction
in two different domains, and the initial relaxations of
scaffolding that the system supports.

Introduction
Humans learn procedures from one another through a variety
of methods, such as observing someone do the task, watch-
ing many examples, and reading manuals or textbooks. Ex-
amples are a very natural way to teach, but when procedures
are complex it becomes unmanageable to induce the pro-
cedure from examples. A very common method is tutorial
instruction, which describes in general terms what actions
to perform and possibly includes explanations of the depen-
dencies among the actions. These different methods are of-
ten combined, where instruction is followed by illustrative
examples, or examples are complemented with instruction
that guides the induction process. Researchers have inves-
tigated methods to learn procedures from examples(Kael-
bling, Littman, and Moore 1996; Yang, Wu, and Jiang 2007;
Lieberman 1994; Lau et al. 2003; Winner and Veloso 2002),
sometimes in combination with some form of instruction
given as advice (Maclin and Shavlik 1996) or explanation
(Allen et al. 2007).

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A different line of research has investigated learning pro-
cedures from user instruction, focusing on learning modifi-
cations to existing procedures (Blythe et al. 2001) or assem-
bling procedures from pre-existing tasks (Clark et al. 2001;
Kim and Gil 2001). These approaches require the user to
provide the instruction in the form required by the system.
Other approaches to learning from instruction are more nat-
ural for users as they are free to provide any kind of instruc-
tion and can do so in natural language (Webber et al. 1995;
Huffman and Laird 1995).

Instruction can be of many kinds (Webber et al. 1995), in-
cluding general policies regarding acceptable behaviors, ad-
vice on how to proceed, suggestions for preferences, analo-
gies, requests, and tutorial descriptions. Another important
factor is whether it is given before, during, or after the pro-
cedure takes place. Our initial focus is on tutorial instruction
given before execution or planning takes place.

Our broad goal is to learn procedures from human instruc-
tion stated in a manner that is natural to provide. Although
all humans are natural teachers, and instruction is a very
common way to teach, humans are often are poor instruc-
tors. Anyone who has consulted a manual for programming
a VCR can attest to this. Studies have shown that better in-
struction enables better and faster learning. In spite of poor
instruction, humans often times learn by compensating with
expertise or practice.

Acknowledging the many challenges of developing elec-
tronic students and the many contributions of prior research
in this topic, we focus on a novel area of research: a new
approach to the design electronic students that can take on
increasingly more deficient instruction (from the point of
view of ease of learning) as they are extended over time with
new capabilities. The strategy to develop these systems is to
start designing them to take on complete and correct instruc-
tion both in content and organization to facilitate the stu-
dent’s learning. As learning by instruction continues, some
of the benevolent properties of the instruction are removed
and the student is extended to accommodate those deficien-
cies. Eventually, the student should accept instruction in a
form that is natural for humans to provide. In this paper, we
show our initial work in developing this approach for learn-
ing procedures from tutorial instruction. The contributions
of this paper are as follows:

1. A framework for building electronic students for learning



from tutorial instruction.
2. A symbolic execution algorithm for determining the plau-

sibility of a procedure description.
3. An initial implementation of the framework that generates

learned procedures in a variety of formats.
The paper is structured as follows. We begin with an

overview on human instruction and the motivation and fo-
cus for this research. We then discuss a general framework
for learning from tutorial instruction. We describe our tar-
get procedure language and the language used to provide
instructions, followed by examples from RoboCup and Soli-
taire of incomplete tutorial instruction. We then present
the algorithms, heuristics and their implementation that en-
ables learning procedures from these instruction. Finally,
we present the results generated by our implementation and
conclude.

Motivation
Human instruction is ubiquitous and yet is often poor and
leads to inefficient or little learning. The order of instruc-
tions is important. Human learners process much better in-
structions that provide first an overview of the organization
of the procedure and then details on each of the steps [Dixon
87]. When steps are provided first, subjects attempted im-
mediately to interpret them but then had to correct their in-
terpretation once the organizational portion of the instruc-
tion was given. When the organizational information is pro-
vided first, subjects formed a structure where the compo-
nent steps could be directly assimilated. Omissions in the
instructions are also an important factor. Human learners
assume that steps that are important to the procedure will
be explicitly stated in the instruction, though they manage
to learn when steps are implicit in the instruction (Dixon,
Faries, and Gabrys 1988). Conversely, when steps are rela-
tively unimportant but stated explicitly, the initial inferences
made about them tend to be erroneous and must be later cor-
rected. This does not happen when learners have expertise in
the subject matter, and use their own judgment to decide on
the importance of the steps. Another important factor is the
overall structure of the instructions. Poor instruction results
when its structure does not parallel the hierarchical structure
of the procedures being described [Donin et al 92]. Finally,
the amount of information or detail specified affects com-
prehension. The absence of information about action depen-
dencies and about how a device works hinders the learning
of new procedures (Steehouder, Karreman, and Ummelen
2000). (Mahling and Croft 1989) found that most people
are very good at expressing task decomposition, sequencing,
and preconditions, but are not very good at recalling effects
of procedures and actions.

Given that humans often provide deficient instruction, our
goal is to develop an electronic student that can be resilient
to such deficiencies. Our research is driven to supplement
particular deficiencies in instruction that we will introduce
as the student is capable of handling them. These deficien-
cies result from both the teacher giving less than ideal (but
natural) instruction, and the student capabilities and prior
knowledge being less than ideal for learning from less than

ideal instruction. This is related to what is known in tu-
toring systems as tutorial scaffolding (Reiser 2004), where
a teacher adds extra information to facilitate learning when
the student is a poor learner or the material is too advanced.
Scaffolding is added (deepening) or removed (fading) over
time as the student is found to need it or no longer need it re-
spectively. In our case, the extra information included in the
instruction may be seen as scaffolding, as our student is not
yet capable of absorbing instruction when this information
is absent. Eventually, to become a good student, our student
will also have to accommodate poor teaching.

Framework
We now present a three-stage framework shown in Figure 1
for learning from tutorial instruction. The aim of this frame-
work is to support the investigation of algorithms to deal
with increasingly deficient instruction. It is not designed to
deal directly with natural language instruction. Instead, it
uses structured markup, which allows for the systematic in-
vestigation of instruction ambiguities. The framework is de-
signed to accommodate new learning capabilities within the
student. We assume that the student has some prior knowl-
edge that forms its initial knowledge base before instruction.

Ingestion
The first stage of the framework is ingestion, where instruc-
tion markup is converted into a set of assertions about the
procedure that we call a procedure stub. During ingestion,
the system identifies subtasks, their ordering, the dependen-
cies between subtasks, the state required to execute each
subtask, and subtask parameters. Ingestion is done inde-
pendently from any prior knowledge of the student. This
enables a separation of concerns between the conversion of
instruction markup and the student’s internal reasoning. In
very few cases will tutorial instruction result in a complete,
self-contained procedure stub that is sufficient for its exe-
cution. Ingestion simply creates a set of assertions about
the procedure, and does not attempt to rectify incomplete or
imprecise instruction. Instead, these gaps in ingested knowl-
edge are rectified in the next stage of the framework.

Elaboration
Elaboration consists of two parts: the mapping of ingested
knowledge with student’s prior knowledge and the applica-
tion of reasoning to infer missing process knowledge. The
mapping of knowledge from multiple sources is a complex
topic. Our initial framework adopts a simplified approach.
It assumes that the teacher and the student use a common
vocabulary of predicates and properties across lessons. The
result of mapping is a set of expanded procedure stubs. Cur-
rently, because of our mapping assumption only one ex-
panded procedure stub is produced. After mapping, the
elaboration step takes these expanded procedure stubs and
applies heuristics that attempt to fill in the gaps in the pro-
cedural knowledge by formulating hypotheses about those
gaps. The application of these heuristics results in the gen-
eration of alternative hypotheses for the procedure or pro-
cedure hypotheses. The student must then be able to deter-



Plausible

Procedure

Hypotheses

ElaborationIngestion

Mapping
to Internal KB

Infer
Missing Info

Selection

Procedure

Hypotheses

Instruction
Procedure

Stub

Figure 1: A framework for learning from tutorial instruction

mine which hypotheses are inconsistent and which may be
successful during execution, which is done next.

Selection
At this stage, the student must decide which procedure
hypotheses to discard given what it knows. To do this,
we adopt an approach from program testing and analysis,
namely, symbolic execution (King 1976). Instead of exe-
cuting a program with inputs initialized to particular values,
the inputs in symbolic execution are given symbolic values,
which represent a class of inputs. Thus, the consistency of
the program for that class of inputs is checked. Symbolic
execution is similar to the static evaluation techniques pro-
posed in (Etzioni 1993) but it starts with a high-level de-
scription of a goal. The exact algorithm used for symbolic
execution is described later in the Selection Algorithm sec-
tion.

Broadly, the student starts from a nominal state formed by
nominal objects of the type required to initiate the procedure
hypothesis (Skolems), the student then walks through the
decomposition network of the procedure candidate. When a
primitive task is found the system returns additional nominal
objects as needed. During the walk, if multiple procedures
are found the algorithm branches investigating each possibil-
ity. If at any point the state is inconsistent within a branch,
that branch discontinues execution. Likewise, if a task (ei-
ther primitive or another procedure) required by the decom-
position is not found, the branch discontinues execution. If
all the branches of execution for a procedure hypotheses are
discontinued, then the hypothesis is ruled out. The result of
this process is a set of plausible procedure hypotheses.

As the execution is performed, a trace is also created.
The trace contains all the procedures and primitive tasks that
were executed, the branches of decomposition, and the sym-
bols used during execution. This trace enables plausible pro-
cedure hypothesis to be compared and ranked.

Procedure Language
Instructions, as in many technical and scientific expositions,
are often provided with a goal-oriented hierarchical struc-
ture (Britt and Larson 2003). Representing procedures as
goal decomposition hierarchies has also been found to be
useful for providing explanations of problem solving behav-
ior (Swartout, Paris, and Moore 1991). The same repre-
sentations are more amenable to be modified by users (Gil

and Melz 1996). In addition, hierarchical goal decomposi-
tion is used in many planners and solvers (e.g., (Nau et al.
2003)). Consistent with this body of research, we adopt a
representation of procedures that decomposes them into a
set of subtasks to be accomplished by other procedures as
well as primitive tasks that can be directly executed in the
world.

The language represents procedures as objects with prop-
erties that relate the procedures to other entities or objects.
Through the learning process, the student makes assertions
about the procedures. Each procedure has a signature which
defines its name, a set of conditions indicating the state fea-
tures or inputs that the procedure needs in order to be appli-
cable, and, possibly, the result of executing the procedure.
Both inputs and results can be assigned a type. Inputs may
also be assigned a value, which is defined using the hasValue
relationship on the input object. Procedures can specify a
number of subtasks using the hasSteps property which links
to a sequence of subtasks and/or loops. Loops are expressed
using a repeat-until construct. The repeat property links a
loop to a set of subtasks and/or loops. The until-portion of
the loop is defined by the until property, which links to a task
that should always return a Boolean value. We note that the
language does not differentiate between calls to subtasks and
primitive tasks. While this language is simple, it is sufficient
to describe a variety of procedures. This representation can
be converted to a number of formats.

Instruction Markup
Based on the above procedure language, we have devised an
initial set of instructor markup that allows for the expression
of complete, detailed (but not natural) tutorial instruction,
and allows for the omission of instruction elements result-
ing in more natural statements. Although humans will pre-
fer providing instructions in natural language, the instruction
markup we describe here can be seen as the output of a natu-
ral language interpretation system (e.g., (Webber et al. 1995;
Huffman and Laird 1995), or as the target of controlled En-
glish for an interface generator (e.g., as in (Fuchs, Kaljurand,
and Schneider 2006)).

Tutorial instruction is divided into lessons where each les-
son describes a particular procedure and is assumed to build
on prior lessons. Each lesson consists of a sequence of in-
struction statements containing keywords that represent the
markup. At the beginning of each lesson, the instructor pro-
vides a name to the lesson using the start keyword. Like-



wise, the instructor can provide an exact identifier to be used
in subsequent lessons with the hasId keyword. The proce-
dure’s inputs and results are defined using the initSetup and
resultIs keywords respectively. Variables are identified us-
ing the name keyword. They can be assigned a type using
the combination of the isa and type keywords. Likewise,
they can be assigned a value using the hasValue and value
keywords. Using these constructs, the instructor can express
constant values.

In subsequent instructions, the instructor can specify that
the student should do a particular subtask using the doThis
keyword. The name of the task to be invoked is specified
using the name keyword. The variables acting as input are
identified either using the basedOn or from keyword. The
results of the task invocation are identified using the expect
keyword. Variables can be introduced at any time during in-
struction and the student can be told to reassign the value of
a variable to another variable using the remember keyword.
Finally, the instructor can tell the student to repeat a number
of task until another task returns true using the repeat and
until keywords.

This instructor markup provides a number of scaffolding
instructions that a human instructor would not always em-
ploy. First, the instructor markup may assume that the stu-
dent knows the input to a particular procedure or task and
thus would not make use of the basedOn, from, or initSetup
keywords in their instruction. Second, an instructor may not
explicitly tell the student what to expect from a task they
are instructed to perform and thus would not use the expect
keyword. Third, the instructor may assume that the student
would know the type of the entity being used in a task from
prior knowledge and thus, not always employ the type key-
word. Finally, the student should be able to handle instruc-
tions given out of order (i.e. instruction should be able to
refer to subtasks that have not yet been taught).

Examples of Instruction
We now provide two examples of instructor markup and il-
lustrate the scaffolding that our system can eliminate. The
first example, shown in Figure 2, is a description of how to
setup a card game of Klondike solitaire. We assume that
the student already knows about CardDeck, Hands, Deal,
Decrement, Equals, and Layout. The instruction in Figure 2
mirrors the following textual natural instruction:

To setup for a game of solitaire, take a deck of cards
and deal seven cards. Layout the cards horizontally on
the table with the first card face up. Using one less card
each time, repeat dealing and laying out the cards.

Applying the relaxations discussed in the previous sec-
tion, the grayed out instructions can be eliminated from the
instruction set. Additionally, the lesson for the Layout pro-
cedure, for example, can be taught after this lesson. We
note that the textual instruction does not state the termina-
tion condition and yet it is shown in the markup in Figure 2.
This is one kind of scaffolding that our system needs.

The second example of instruction is taken from the
RoboCup soccer domain. It describes how to get open for

a ball. The instructions are shown in Figure 3 and the tex-
tual natural instruction is as follows:

Find your closest opponent. Dash away from them.
Stop and move back to your previous position (e.g. cut
back). If you are not open, do this again. Once your
open, find the ball and face it.

By eliminating just some of the scaffolding in the in-
struction markup, a more natural description is approached.
For instance, by eliminating the basedOn keyword in line
6 of the instruction, the instruction “FindClosestOpponent
expect opponentLocation” resembles the instruction “Find
your closest opponent”.

1: begin lesson
2: start SetupKlondikeSolitaire hasId 8887

// To setup for a game of solitaire,
3: resultIs name=solitaireGameSetup isa type=GameSetup

// take a deck of cards and
4: initSetup name=deck isa type=CardDeck

// deal seven cards.
5: name=numberOfCards hasValue 7
6: doThis name=Deal basedOn deck, numOfCards
7: expect name=hand
8: name=hand isa type=Hand

// Layout the cards horizontally
// on the table with the first card face up

9: doThis name=Layout basedOn hand
// Using one less card each time,
// repeat dealing and laying out the cards

10: repeat
11: doThis name=Decrement basedOn numOfCards

expect numOfCards
12: doThis name=Deal basedOn deck, numOfCards

expect hand
name=hand isa type=Hand

13: doThis name=Layout basedOn hand
until

14: name=Equals basedOn numOfCards, 1
15: end lesson

Figure 2: Instructions for Setting up Klondike Solitaire. The
typewriter font shows scaffolding that can be removed from
the instruction, resulting in instruction that the current sys-
tem can learn from.

Currently, our implementation of the framework, TellMe,
handles the following ambiguities in instruction:

• Some missing subtask inputs and results.

• Some missing primitive types (e.g. integer).

• Some missing types on subtask results.

• Out-of-order lessons.

• Multiple procedure definitions having the same signature.

However, in order for TellMe to rectify these gaps in in-
struction the following scaffolding is required:

• Terms must be common across both the instruction and
the student’s knowledge base.



1: begin lesson
2: start GetOpen hasId 8888
3: repeat

// Find your closest opponent.
4: doThis name=GetCurrentPosition expect originalPosition
5: name=originalPosition isa type=Position
6: doThis name=FindClosestOpponent

basedOn=originalPosition
expect=opponentLocation

// Dash away from them
7: name=opponentLocation isa type=Position
8: doThis name=FaceAwayFrom

basedOn opponentLocation
9: doThis name=Dash expect=currentPosition

10: name=currentPosition isa type=Position
// Stop and move back to your previous position
(e.g. cut back).

11: doThis name=MoveTowards
12: basedOn originalPosition expect=currentPosition

// If you are not open, do this again.
13: until
14: name=Open basedOn currentPosition

// Once your open, find the ball and face it.
15: doThis name=FindTheBall expect=ballLocation
16: name=ballLocation isa type=Position
17: doThis name=Face basedOn ballLocation
18: end lesson

Figure 3: Instructions for Getting Open in a RoboCup do-
main

• Instruction must follow a strict order within a lesson
where each step directly follows from the previous step.

• All statements within instruction must be correct though
they may be incomplete.

Framework Algorithms and Heuristics
We now describe the algorithms and heuristics TellMe im-
plements in order to learn the procedures shown in Figures
2 and 3 without the highlighted scaffolding. We proceed
through each of the stage of the framework. During the in-
gestion stage, TellMe creates a model that reflects the pro-
cedure language concepts and properties. This provides the
procedure stub on which the following heuristics operate on
during the elaboration stage.

Elaboration Heuristics
The first part of elaboration is the mapping of the procedure
stub to the student’s internal knowledge. Currently, as pre-
viously described, a simplified approach is adopted and only
one heuristic is applied, which is as follows:

• If a variable is assigned a constant in the instruction, then
find a consistent basic type for it. Basic types are integer,
boolean, and string.

This heuristic enables, for example, the type of the nu-
mOfCards variable in Figure 2 to be inferred. After map-
ping, the elaboration stage then uses the following heuris-
tics, encoded as inference rules, to hypothesize the missing

parts of the body of the expanded procedure stub generated
during mapping.

• If a subtask, T, has no results, find some step, S, immedi-
ately following the call to the subtask, take S’s inputs and
make them T’s results.

• If a subtask, T, has no inputs, find some step, S, imme-
diately preceding the call to T, take S’s results and make
them T’s inputs.

• If a subtask, T, has a result, R, with no type, take (arbitrar-
ily) one of T’s inputs and make R’s type the type of that
input.

Because different combinations of these heuristics may
result in different procedure hypothesis, the power set of
these heuristics is applied. Because there are three heuris-
tics, a space of 32 alternative procedure hypothesis is gener-
ated. We now describe the selection algorithm used to pare
down this hypothesis space.

Selection Algorithm
The selection algorithm described below is symbolic execu-
tion algorithm that provides a trace of its execution to enable
the comparison of various procedure hypothesis. The selec-
tion algorithm works over the procedure language described
above and the student’s internal knowledge base. The algo-
rithm relies on the following definitions.

• A signature, sig, is defined as a tuple containing a name,
sname, a list of arguments containing name, type pairs,
{(aname, atype), . . .} and a result pair (rname, rtype):
sig = 〈sname, {(aname, atype), . . .}, (rname, rtype)〉.

• A procedure, p, is defined as a tuple containing a signa-
ture, sig, and a body that consists of a list of signatures,
SIG:
p = 〈sig, SIG〉

• A knowledge base, KB, is both a map of signatures to
procedures and a map of name, type pairs to values:
KB[sig]→ SIG, KB[((xname, xtype)]→ v

• A state, S, is a map from a name, type pair to a value, v:
S[(xname, xtype)]→ v

• A table, PrimitiveTasks that maps a signature name
name, and a list of type, value pairs, A, to a skolem result
value, r:
r ← PrimitiveTasks[name, A]

• A trace, t, is a tree where the tree nodes are named by
tuples containing a signature, state, and boolean value,
where the boolean value describes whether the task de-
fined by the signature was successful in executing upon
the state. The branches in the tree describe the branches
of execution.

• A trace node, tn, is defined as reference to a node in a
trace.

• A result, r, is a tuple containing a trace and a constant, g,
denoting the whether the symbolic execution was a suc-
cess or failure.



SELECT(KB, p)

1 create a blank state, S
2 for each argument, (aname, atype) in p.sig
3 do create a skolem value, v, of atype

4 � Put the skolem value in the state
5 v → S[(aname, atype)]
6 create a new trace, t
7 get the root node, tn of trace, t
8 � Begin the symbolic execution
9 return PROCWALK(KB, S, p, tn)

Figure 4: Pseudo-code for starting the selection algorithm

• We use a dot accessor notation to denote accessing fields
in a tuple. Hence, sig.sname would “retrieve” the name
for the particular signature.

The selection algorithm begins in the SELECT method,
which takes a procedure and generates skolems (i.e. sym-
bols) for each of the inputs of the procedure as defined by
its signature, p.sig and adds these to the state. SELECT then
calls the PROCWALK method.

The PROCWALK method symbolically executes each of
the steps defined in a procedure by either executing all the
procedure definitions that correspond to the step’s signature
or, if there are no procedure definitions corresponding to the
signature, checking whether there is a primitive task that
can perform the step. Thus, the algorithm supports check-
ing multiple ways of performing the same task. For ex-
ample, there may be two procedures for moveTowards in
the RoboCup example, the algorithm would check whether
both are consistent with the GetOpen procedure hypothesis.
Note, that a step fails (and thus the procedure fails) only if all
of possible procedure definitions also fail as shown starting
on PROCWALK line 26 or when no procedure definitions ex-
ist, there is no primitive task for that step. A procedure will
fail if one of its steps fails or the state does not contain the
necessary symbols for the procedure to execute as defined
by the procedure’s signature.

The PROCWALK method checks whether primitive tasks
exist using the CHECK method, which looks up the provided
signature in a table, which maps the signature to a symbolic
value.

For conciseness, the algorithm presented here does not
treat loops. However, our implementation does symbolically
execute loops. As we are focused on consistency, the im-
plementation does not execute the loop iteratively until its
condition has been met, but instead treats the loop body as
if it were a procedure body and executes it as such. The im-
plementation also tests to ensure that the loop’s condition is
also executable.

Once finished, the selection algorithm returns a result
consisting of a trace and a result constant. If the result
constant is FAIL then the procedure hypothesis is discarded.
However, if the constant is a success, the hypothesis is re-
tained as a plausible procedure hypothesis. To reduce the
number of plausible procedure hypothesis even further, we
make use of the trace associated with each hypothesis. It is
often the case that only some heuristics used in the elab-

PROCWALK(KB, S, p, tn)

1 create a new tree node, tnp = (p.sig, S, false)
2 add tnp as a child of tn.
3 � Check to see if the state contains the arguments
4 � necessary for the given procedure,
5 � if the state does not have an appropriate value
6 � try and load a default value from the knowledge base.
7 � If that does not work, fail.
8 for each argument, (aname, atype) in p.sig
9 do if S does not contain (aname, atype)

10 then
11 if v ← KB[(aname, atype) is not NIL
12 then v → S[(aname, atype)]
13 else return (tnp, FAIL)
14 � Go through the body of the procedure
15 � (i.e. the list of signatures referenced by the procedure).
16 � Either the KB has a procedure definition that ,
17 � matches the signature or
18 � the procedure is a primitive task, which can be checked.
19 for each sig ∈ p.SIG
20 do {p1, . . . pn} ← KB[sig]
21 if {p1, . . . pn} is NIL � i.e. not in the KB
22 then
23 if CHECK(sig, S, tnp) is NIL
24 then return (tnp, FAIL)
25 else
26 oneSuccessfulProc = false
27 for each px ∈ {p1, . . . pn}
28 do
29 r = PROCWALK(KB, S, px, tnp)
30 if r.g is SUCCESS
31 then oneSuccesfulProc = true
32 if oneSuccessfulProc is false
33 then return (tnp, FAIL)
34 tnp = (p.sig, S, true)
35 return (tnp, SUCCESS)

Figure 5: Pseudo-code for walking through a procedure de-
composition

CHECK(sig, S, tn)

1 create a new tree node, tnc = (sig, S, false)
2 add tnc as a child of tn.
3 � Check to see if a primitive task is
4 � defined for the particular signature but without using
5 � any argument names.
6 A is a list of pairs of argument types and values
7 for each argument, (aname, atype) in sig
8 do v ← S[(aname, atype)]
9 add the pair (atype, v) to A

10 r ← PrimitiveTasks[signame, A]
11 � If a skolem result is returned by
12 � the table lookup update the state.
13 if r is not NIL
14 then
15 tnc = (sig, S, true)
16 r → S[sig.((rname, rtype)]
17 return r

Figure 6: Pseudo-code for looking up primitive tasks



oration stage actually apply to a particular set of tutorial
instruction. Hence, when applying the power set of these
heuristics, identical procedure hypotheses are created by the
application of different sets of heuristics. To detect whether
a procedure hypotheses is identical, their traces can be com-
pared. For example, the SetupKlondikeSolitaire instructions
result in 8 plausible procedure hypotheses, but after com-
paring traces, it was determined that there was only one true
hypothesis. As our algorithms support increasingly ambi-
gious instruction, the number of plausible hypothesis will
undoubtedly increase. Our aim is to leverage these traces to
rank and select the best hypotheses.

Implementation
TellMe is implemented as a Java application. To enable in-
tegration with preexisting knowledge sources and to lever-
age existing reasoning systems, we chose the W3C recom-
mended ontology language OWL to represent procedures
and their properties. All assertions produced by the sys-
tem result in triples. The heuristics for inferring miss-
ing procedure knowledge are implemented as Jena rules,
which are applied using the Jena Semantic Web Frame-
work’s (jena.sourceforge.net) built-in forward chaining in-
ference mechanism.

Results
TellMe can output a variety of formats. Here, the output is
formatted for the planner SHOP2 (Nau et al. 2003). Fig-
ures 7 and 8 show excerpts of the procedure representations
learned from the instructions shown in Figures 2 and 3 (type-
writer text scaffolding was omitted for learning). Primitive
tasks are denoted by a “!”. Subtasks (i.e. methods) are not
prefixed by “!”. Variables are denoted by “?”. Loops in our
procedure language are translated into recursive calls. Cur-
rently, only procedure definitions are output and not primi-
tive tasks . Each excerpt shows the definition of each pro-
cedure as well as particular steps the procedure calls. The
portions of the procedure language highlighted in bold are
inferred in the elaboration stage. For example, in the de-
scription of the Deal step shown in Figure 7, the result
of the step was inferred. Likewise, in Figure 8, the in-
put to FaceAwayFrom is inferred. Furthermore, Figure 7
shows that two different procedure definitions for Layout
were produced for the same signature required by Setup-
KlondikeSolitaire.

Conclusion
We have presented an approach to learn procedures from hu-
man tutorial instruction. This approach deals with a number
of deficiencies in instruction including undefined procedure
inputs and outputs, missing typing information, and out-of-
order of lessons. However, to cope with these deficiencies,
the system still requires scaffolding, namely, the use of com-
mon terminology between the student and teacher, well or-
dered instruction, and correct instruction. In future work, we
aim to remove this scaffolding through the addition of new
elaboration heuristics, a more complex mapping approach,
and selection heuristics based on the traces produced during

(:method
;head

(SetupKlondikeSolitaire
?deck)

;precondition
()

;subtasks
(:ordered

(!Deal 7 ?deck)
(Layout ?hand)
(Loop0)))

(:method
;head

(Loop0)
;precondition

(!Equals ?numOfCards 1)
;subtasks

(:ordered
(!Decrement ?numOfCards)
(!Deal ?numOfCards ?deck)
(Layout ?hand)
(Loop0)))

(:method
;head

(Layout ?hand)
;precondition

()
;subtasks

(:ordered
(!DrawOne ?hand)))

(:method
;head

(Layout ?hand)
;precondition

()
;subtasks

(:ordered
(!GetTopCard ?hand)
(!TurnFaceUp ?cardInHand)
(!Place ?startLocation ?cardInHand)
(!GetTopCard ?hand)
(!PlaceNextTo ?lastPlacedCard

?cardInHand)
(!GetLocationOfCard ?cardInHand)
(Loop1)))

Figure 7: Excerpt of the learned domain for Setup-
KlondikeSolitaire

(:method
;head

(GetOpen)
;precondition

()
;subtasks

(:ordered
(Loop0)
(FindTheBall)
(!Face ?ballLocation)))

(:method
;head

(Loop0)
;precondition

(!Open ?currentPosition)
;subtasks

(:ordered
(!GetCurrentPosition)
(!FindClosestOpponent ?originalPosition)
(!FaceAwayFrom ?opponentLocation)
(!Dash)
(!MoveTowards ?originalPosition)
(Loop0)))

Figure 8: Excerpt of the learned domain for GetOpen



symbolic execution. Furthermore, we aim to use existing
procedures to bootstrap the internal knowledge of the stu-
dent before tutorial instruction.

This paper explored the design of electronic students that
can be extended over time with new capabilities that enable
them to learn procedures from increasingly more natural in-
struction as quantified by the removal of scaffolding state-
ments. Concretely, we presented a framework for dealing
with tutorial instruction, a markup language that expresses
instruction details piecemeal so they can be removed and a
set of heuristics for inferring missing procedure knowledge.
Additionally, we presented a symbolic execution algorithm
for checking the consistency of procedure hypothesis. Fi-
nally, we described an implementation of the electronic stu-
dent framework that demonstrates in two domains that it can
learn procedures from incomplete tutorial instruction.

References
Allen, J.; Chambers, N.; Ferguson, G.; Galescu, L.; Jung,
H.; Swift, M.; and Taysom, W. 2007. PLOW: A Collab-
orative Task Learning Agent. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI-07).
Blythe, J.; Kim, J.; Ramachandran, S.; and Gil, Y. 2001.
An Integrated Environment for Knowledge Acquisition. In
Proceedings of the International Conference on Intelligent
User Interfaces (IUI-2001).
Britt, M., and Larson, A. 2003. Construction of argument
representations during on-line reading. Journal of Memory
and Language 48(4).
Clark, P.; Thompson, J.; Barker, K.; Porter, B.; Chaudhri,
V.; Rodriguez, A.; Thoméré, J.; Mishra, S.; Gil, Y.; Hayes,
P.; and Reichherzer, T. 2001. Knowledge entry as the
graphical assembly of components. In K-CAP ’01: Pro-
ceedings of the 1st international conference on Knowledge
capture, 22–29.
Dixon, P.; Faries, J.; and Gabrys, G. 1988. The role of ex-
plicit action statements in understanding and using written
directions. Journal of Memory and Language 27(6):649–
667.
Etzioni, O. 1993. Acquiring search-control knowledge via
static analysis. Artificial Intelligence 62(2):255–301.
Fuchs, N. E.; Kaljurand, K.; and Schneider, G. 2006. At-
tempto Controlled English Meets the Challenges of Knowl-
edge Representation, Reasoning, Interoperability and User
Interfaces. In FLAIRS 2006.
Gil, Y., and Melz, E. 1996. Explicit representations of
problem-solving strategies to support knowledge acquisi-
tion. In AAAI/IAAI, Vol. 1, 469–476.
Huffman, S. B., and Laird, J. E. 1995. Flexibly instructable
agents. Journal of Artificial Intelligence Research 3:271–
324.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Kim, J., and Gil, Y. 2001. Knowledge analysis on process
models. In IJCAI, 935–942.

King, J. C. 1976. Symbolic execution and program testing.
Communications of the ACM 19(7):385–394.
Lau, T.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by demonstration using version space
algebra. Machine Learning 53(1-2):111–156.
Lieberman, H. 1994. A user interface for knowledge ac-
quisition from video. In AAAI ’94: Proceedings of the
Twelfth National Conference on Artificial intelligence (vol.
1), 527–534.
Maclin, R., and Shavlik, J. W. 1996. Creating advice-
taking reinforcement learners. Machine Learning 22(1-
3):251–281.
Mahling, D. E., and Croft, W. B. 1989. Relating human
knowledge of tasks to the requirements of plan libraries.
International Journal of Man-Machine Studies 31(1):61–
97.
Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Plan-
ning System. Journal of Artificial Intelligence Research
20:379–404.
Reiser, B. J. 2004. Scaffolding Complex Learning: The
Mechanisms of Structuring and Problematizing Student
Work. Journal of the Learning Sciences 13(3):273–304.
Steehouder, M.; Karreman, J.; and Ummelen, N. 2000.
Making sense of step-by-step procedures. In Proceedings
of the 18th annual ACM International Conference on Com-
puter Documentation, 463–475.
Swartout, W.; Paris, C.; and Moore, J. 1991. Explana-
tions in knowledge systems: Design for explainable expert
systems. IEEE Expert 06(3):58–64.
Webber, B.; Badler, N.; Eugenio, B. D.; Geib, C.; Levi-
son, L.; and Moore, M. 1995. Instructions, intentions and
expectations. Artificial Intelligence 73(1-2):253–269.
Winner, E., and Veloso, M. 2002. Analyzing plans with
conditional effects. In Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted MAX-SAT.
Artificial Intelligence 171(2-3):107–143.


